4,429 research outputs found

    Laplacian Distribution and Domination

    Get PDF
    Let mG(I)m_G(I) denote the number of Laplacian eigenvalues of a graph GG in an interval II, and let γ(G)\gamma(G) denote its domination number. We extend the recent result mG[0,1)γ(G)m_G[0,1) \leq \gamma(G), and show that isolate-free graphs also satisfy γ(G)mG[2,n]\gamma(G) \leq m_G[2,n]. In pursuit of better understanding Laplacian eigenvalue distribution, we find applications for these inequalities. We relate these spectral parameters with the approximability of γ(G)\gamma(G), showing that γ(G)mG[0,1)∉O(logn)\frac{\gamma(G)}{m_G[0,1)} \not\in O(\log n). However, γ(G)mG[2,n](c+1)γ(G)\gamma(G) \leq m_G[2, n] \leq (c + 1) \gamma(G) for cc-cyclic graphs, c1c \geq 1. For trees TT, γ(T)mT[2,n]2γ(G)\gamma(T) \leq m_T[2, n] \leq 2 \gamma(G)

    Preservation of glaciochemical time-series in snow and ice from the Penny Ice Cap, Baffin Island

    Get PDF
    A detailed investigation of major ion concentrations of snow and ice in the summit region of Penny Ice Cap (PIC) was performed to determine the effects of summer melt on the glaciochemical time-series. While ion migration due to meltwater percolation makes it difficult to confidently count annual layers in the glaciochemical profiles, time-series of these parameters do show good structure and a strong one year spectral component, suggesting that annual to biannual signals are preserved in PIC glaciochemical records

    Optimal Weighting of Preclinical Alzheimer’s Cognitive Composite (PACC) Scales to Improve their Performance as Outcome Measures for Alzheimer’s Disease Clinical Trials

    Get PDF
    Introduction: Cognitive composite scales constructed by combining existing neuropsychometric tests are seeing wide application as endpoints for clinical trials and cohort studies of Alzheimer’s disease (AD) predementia conditions. Preclinical Alzheimer’s Cognitive Composite (PACC) scales are composite scores calculated as the sum of the component test scores weighted by the reciprocal of their standard deviations at the baseline visit. Reciprocal standard deviation is an arbitrary weighting in this context, and may be an inefficient utilization of the data contained in the component measures. Mathematically derived optimal composite weighting is a promising alternative. Methods: Sample size projections using standard power calculation formulas were used to describe the relative performance of component measures and their composites when used as endpoints for clinical trials. Power calculations were informed by (n=1,333) amnestic mild cognitive impaired participants in the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set. Results: A composite constructed using PACC reciprocal standard deviation weighting was both less sensitive to change than one of its component measures and less sensitive to change than its optimally weighted counterpart. In standard sample size calculations informed by NACC data, a clinical trial using the PACC weighting would require 38% more subjects than a composite calculated using optimal weighting. Discussion: These findings illustrate how reciprocal standard deviation weighting can result in inefficient cognitive composites, and underscore the importance of component weights to the performance of composite scales. In the future, optimal weighting parameters informed by accumulating clinical trial data may improve the efficiency of clinical trials in AD

    Field Guide to Exhumed Major Faults in Southern California

    Get PDF
    This field guide provides an overview of exposures and provides a field trip guide to localities of exhumed faults in southern California. We focus on exposures of faults that are documented or inferred to be exhumed from seismogenic depths. The goal of this guidebook is to provide geoscientists who are interested in fault zone mechanics and earthquake processes a summary of the results of the work on these sites
    corecore